§ 29.71 - (2) The steady rate of climb without ground effect, 1000 feet above the take-off surface, must be at least 150 feet per minute, for each weight, altitude, and temperature for which takeoff data are to be scheduled with— - (i) The critical engine inoperative and the remaining engines at maximum continuous power including continuous OEI power, if approved, or at 30-minute OEI power for rotorcraft for which certification for use of 30-minute OEI power is requested; - (ii) The landing gear retracted; and - (iii) The speed selected by the applicant. - (3) The steady rate of climb (or descent) in feet per minute, at each altitude and temperature at which the rotorcraft is expected to operate and at any weight within the range of weights for which certification is requested, must be determined with— - (i) The critical engine inoperative and the remaining engines at maximum continuous power including continuous OEI power, if approved, and at 30-minute OEI power for rotorcraft for which certification for the use of 30-minute OEI power is requested: - (ii) The landing gear retracted; and (iii) The speed selected by the applicant. - (b) For multiengine Category B rotorcraft meeting the Category A engine isolation requirements, the steady rate of climb (or descent) must be determined at the speed for best rate of climb (or minimum rate of descent) at each altitude, temperature, and weight at which the rotorcraft is expected to operate, with the critical engine inoperative and the remaining engines at maximum continuous power including continuous OEI power, if approved, and at 30-minute OEI power for rotorcraft for which certification for the use of 30-minute OEI power is requested. [Doc. No. 24802, 61 FR 21900, May 10, 1996; 61 FR 33963, July 1, 1996, as amended by Amdt. 29-44, 64 FR 45337, Aug. 19, 1999; 64 FR 47563, Aug. 31, 1999] ## § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the requirements of §29.67(b) and the powerplant installation requirements of category A, the steady angle of glide must be determined in autorotation— - (a) At the forward speed for minimum rate of descent as selected by the applicant; - (b) At the forward speed for best glide angle; - (c) At maximum weight; and - (d) At the rotor speed or speeds selected by the applicant. [Amdt. 29-12, 41 FR 55471, Dec. 20, 1976] #### § 29.75 Landing: General. - (a) For each rotorcraft— - (1) The corrected landing data must be determined for a smooth, dry, hard, and level surface: - (2) The approach and landing must not require exceptional piloting skill or exceptionally favorable conditions; and - (3) The landing must be made without excessive vertical acceleration or tendency to bounce, nose over, ground loop, porpoise, or water loop. - (b) The landing data required by §§ 29.77, 29.79, 29.81, 29.83, and 29.85 must be determined— - (1) At each weight, altitude, and temperature for which landing data are approved: - (2) With each operating engine within approved operating limitations; and - (3) With the most unfavorable center of gravity. [Doc. No. 24802, 61 FR 21900, May 10, 1996] # § 29.77 Landing Decision Point (LDP): Category A. - (a) The LDP is the last point in the approach and landing path from which a balked landing can be accomplished in accordance with §29.85. - (b) Determination of the LDP must include the pilot recognition time interval following failure of the critical engine. [Doc. No. 24802, 64 FR 45338, Aug. 19, 1999] ### §29.79 Landing: Category A. - (a) For Category A rotorcraft— - (1) The landing performance must be determined and scheduled so that if the critical engine fails at any point in the approach path, the rotorcraft can either land and stop safely or climb out and attain a rotorcraft configuration